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MICROMECHANICAL MODEL OF CRACK GROWTH 

IN FIBER REINFORCED CERAMICS 

Asher A. Rubinstein and Kang Xu 

Department of Mechanical Engineering 

Tulane University 

New Orleans, LA 70118 

ABSTRACT. A model based on the micromechanical mechanism of crack growth resistance in 
fiber reinforced ceramics is presented. The formulation of the model is based on a small scale 
geometry of a macrocrack with a bridging zone, in this case the process zone, which governs the 
resistance mechanism. The effect of high toughness of the fibers in retardation of the crack 
advance, and the significance of the fiber pullout mechanism on the crack growth resistance, are 
reflected in this model. The model allows one to address issues such as influence of fiber 
spacing, fiber flexibility, and fiber-matrix friction. 

Two approaches were used. One represents the fracture initiation and concentrates on the 
development of the first microcrack between fibers. An exact closed form solution has been 
obtained for this case. The second case deals with the development of an array of microcracks 
between fibers forming the bridging zone. An implicit exact solution is formed for this case. In 
both cases, a discrete fiber distribution is incorporated into the solution. 

1. INTRODUCTION 

Ceramic materials have promising potential for the aerospace industry as the structural 

materials of the future. A serious drawback in their application is their brittle pattern of 

failure. To improve the situation, material reinforcements are used in the form of 

additives, such as particles or fibers. The function of these additives is to trap the growing 

crack and, thus, to increase the toughness of the resulting composition. A rather detailed 

description of these additives with key references are given by Rose (1987). Mostly, these 

reinforcements improve fracture resistance under tensile loading. This paper deals with a 



case of ceramics reinforced by unidirectional long fibers. There are several aspects involved 

in the mechanics of fiber reinforcement. Two essentially different situations regarding the 

effect of fiber reinforcement must be pointed out. One case may be described as a long 

crack through the matrix with the fibers holding the crack surfaces (Aveston, Cooper and 

Kelly, 1971, Luh and Evans, 1987). The second case deals with a growing crack through the 

matrix and fibers with a region in the vicinity of the crack tip where the fibers are still intact. 

This paper deals with the second case only. The aim of this paper is to develop a theory 

describing the fracture resistance build up during this crack growth. The physical situation 

considered here is very similar to the case considered by Budiansky and Amazigo (1989), 

but the method of our analysis is totally different, and the results are different to a degree 

as well. Our formulation is based on the discrete fiber distribution, and it includes a 

restriction on fiber flexibility. 

Several methods of analysis of fiber reinforcement have been developed and presented 

in the literature. The common feature of these methods is representation of the 

reinforcement effect of the fibers, or inclusions, as a continuous distribution of forces on 

the crack surfaces (McCartney 1987, Rose 1987, Nemat-Nasser and Hori 1987, Budiansky 

and Amazigo, 1988 and 1989). The distribution function of these forces may be specified 

(Nemat-Nasser and Hori 1987); or the relationship between the surface separation and the 

acting surface tractions may be assigned, and then the integral equation formed to find the 

resulting distribution function and other important parameters of the problem. The 

relationship between the local crack opening and acting surface tractions is the critical item 

of the analysis. In the above-cited references, this relationship is assumed to be linear, as it 

is assumed here, although we are not dealing with continuous distribution of surface 

tractions; rather, we relate the local crack opening to a net force on a fiber. The choice of 

this simplified linear relationship is motivated mostly by the fact that there are no 

experimentally established data which would specify a relationship for the fiber pullout 

under applied force. The formulation employed here may be easily generalized for a 

nonlinear relationship describing the fiber pullout. 

As mentioned above, the failure process in fiber reinforced ceramics involves several 

aspects, some of which are not essential for the purpose of this study. We do not consider 



here fiber breaking (Marshal and Cox, 1987; Thouless and Evans, 1988), fiber - matrix 

interface debonding, and frictional effects modeled by Budiansky, Hutchinson and Evans, 

1986. 

Assumptions. We assume the elastic properties of the fibers to be very similar to the 

properties of the matrix with no significant difference in values of elastic constants. The 

difference between the strain magnitude in the fiber and in the matrix is insignificant at a 

finite distance from the crack surface, y > 0 or y < 0. The amount of fiber pullout is 

proportional to the net force acting on the fiber; that is, we assume a linear friction type 

law. 

2. FORMULATION AND ANALYSIS 

The proposed mathematical model of the analysis of the crack growing mechanism is based 

on consideration of a process zone development ahead of a macrocrack. The size of the 

process zone should be significantly smaller than the length of the crack, so the surrounding 

stress field is controlled by the stress intensity factor generated by the macrocrack. The 

main feature of the fracture process is the expansion of the main crack while some fibers 

remain intact. In two dimensions, this expansion appears as microcracks develop ahead of 

the macrocrack with bridges formed by the fibers. In our formulation, we consider a two 

dimensional problem corresponding to the described process. We consider the initial state 

of the crack growth, that is, formation of the first microcrack; the intermediate state; and a 

steady state case, when a complete assembly of microcracks starts to propagate without 

increasing the number of microcracks. The configurations of these problems are illustrated 

in Figure 1. and Figure 2. Assuming that elastic properties of the fibers are similar to the 

properties of the matrix, we treat the material as isotropic and homogeneous. We also 

neglect the difference in displacements between material points in the fibers and the matrix 

at any finite distance from the crack line (y>0 or y<0). With these assumptions, the 

analysis described by Rubinstein, 1985 and 1987, can be applied. The basic relations of 

plane elastostatics in terms of analytic potentials are, Muskhelishvili, 1975: 

°n+ °22= 4Re</>' (z) 

,- alx+ 2io12= 2(iV(z)   + V-'(z)) C2-1) a22 



2yu(u1+  iu2)   = K<t>(z)   -  z<p' (z)   - JXz) , 

here \i is a shear modulus, v is a Poisson's ratio, and K = 3-4v for plane strain, or 

K =(3-v)/(l+v) for plane stress. Limiting our attention to the Mode I loading, so the 

direction of applied tension is parallel to the direction of fibers, the symmetry condition on 

y = 0 can be stated as 

1 2 (z=x)   = 0 = Im(z<?>"(z)   + tf'(z)). (2.2) 

Functions <t> and j> are analytic in the plane with cuts along y = 0, and, therefore, they may 

be considered as analytic in the upper half plane. Using condition (2.2) and applying the 

principle of analytical continuation, one obtains the relationship between the analytic 

potentials, which is true up to a real constant, 

V-'(z)   = - z<p" (z) . (2.3) 

The constant may be dropped since both sides of (2.3) have to vanish as z - ». With 

relation ( .3), the expressions for the normal stress and displacement components along 

z = x become 

a22=  2Re^'(x) ,        u2= |±^ Im*(x). (2.4) 

Thus, only one analytic function <p has to be determined, and the boundary conditions can 

be written in terms of this function. The condition at infinity states that function <p ' has to 

match the applied stress field, which should be given in terms of a remote stress intensity 

factor K«, (we consider Mode I loading only). 

<P'(z)   —-       m as     z  - co (2.5) 
2J27TZ 

To form a correct boundary value problem we consider the upper half plane as a region for 

<p; thus, to complete a set of boundary conditions the boundary values on z = x have to be 

stated. On the intervals corresponding to the macrocrack and microcracks, the zero traction 

statement will be complete if in addition to the symmetry condition (2.2), we form a 

statement of zero normal stress given by (2.4). On the interval ahead of the complete 

assembly of the microcracks the displacement has to be zero, and, equivalently, its 
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derivative can be stated as such. On the ligaments corresponding to the fibers, the 

displacement is not zero, due to the friction between the fibers and matrix. The matrix 

separates here, and the load is transmitted onto the fibers, and this is an essential aspect of 

the toughening mechanism which has to be accounted for. To realize the nature of the 

displacement on these ligaments, we consider the following: 

It would be reasonable to assume the fibers to be in the form of circular cylinders, and 

therefore, the deformation created by the fiber pullout locally should remain of cylindrical 

symmetry. This means that the displacement of the matrix along the rim of the matrix-fiber 

interface has to be constant, if the direction of the pullout is perpendicular to the matrix 

surface. Therefore, in a two dimensional model, the displacement may be considered to be 

of constant magnitude on each interval corresponding to the separated matrix and the intact 

fiber. The value of this displacement is different for each particular interval, and it is 

controlled by the friction law which relates this displacement to a net force acting on the 

fiber. As a result, the derivative of the displacement on these intervals is zero; this 

completes the necessary set of boundary conditions for the function <p ' (z) in the upper half 

plane. 

i) One link solution. The case of formation of the first microcrack can be resolved in closed 

form and, therefore, deserves a separate consideration. The geometry of this problem is 

given in Figure 1. 

In addition to (2.5) the boundary conditions along z = x are 

Re<*'(x)=0     on    x <  0 and a < x < b 
(2.6) 

lm<|>'(x)=0     on     0  < x <  a    and    b < x 

The relationship between the force on the fiber F and the matrix displacement B is 

assumed to be linear, where \ is a friction coefficient. 

\F = B (2.7) 

The assumption of the linear friction law is not necessary; as will be seen, the problem 

could be solved numerically for any nonlinear relationship instead of (2.7). The only reason 

we assume (2.7) is to simplify the problem, since in this case we have an exact closed form 

solution, and, additionally, currently there is no experimental evidence that the fiber pullout 
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should be described differently. 

The boundary conditions (2.5) and (2.6) form a mixed boundary value problem for an 

analytic function. Muskhelishvili, 1953, outlined the Keldysh-Sedov problem which deals 

with mixed problems for analytic functions, which are regular at z - «. Rubinstein, 1985, 

used an equivalent approach to form a solution with a branch cut extended to infinity. It is 

clear that the same form of the analytic function will satisfy the conditions stated above. 

Thus, we have 

K 

*'(z)   = 
z - d 

2J2¥ Jz(z-a) (z-b) 
(2.8) 

The constant d should be determined from the equation (2.7). The force on the fiber is 

F = 
K 

2 Re x - d 

2j~2lF Jx(x-a) (x-b) 
dx 

K 
-   2 

2j~2¥ 
-2fb  K g     +   2jb  E +  d — K (2.9) 

The following definitions of complete elliptic integrals were used here, Abramowitz, 1972: 

pi 
K(m)   = dx 

JoJ (1  - t2) (1  - mt2) 

E(m)   = 1  - mt: 

1  - fz dx 

The displacement of the matrix on the ligament corresponding to the intact fiber is found as 

a displacement gained due to the microcrack opening. Thus, 

B = 2 K + l 
2ß 

K 
Im x 

2j~2^ Jx(x-a) (x-b) 
dx 

j.1     K /C + l oo 2jb  E 
ß     2j2¥ 

Introduce dimensionless constant 

l - g]   - d -1 K 
bJ Jb 

l - (2.10) 



A   =   2% /c+1 

and from equation (2.7) find 

d 
b 

(2.11) 

E 1   - 
a' 
b 

+ *[*(§] - E 
"a" 
b _ 

K 1  - ■ i]+ A
-
K a (2.12) 

The final expression for the force per unit thickness acting on the first fiber cell becomes 

(2.13) F  =  K     — 
b 

7T 

27T   K [-1] +   A-K 
a~ 

.b 

The stress intensity factor is determined by evaluating the appropriate limits in the usual 

fashion. 

K = K 
o °° 

K  =  K 
a      « 

K =  K b 

Jab 

d - a 
Ja(b-a) 

b  - d 

(2.14) 

(2.15) 

(2.16) 
Jb(b-a) 

Substituting A = 0 into equation (2.12), and then using this result in (2.14, 2.15, and 2.16), 

one will obtain expressions given by Rubinstein, 1985, for a macrocrack interacting with a 

microcrack; unfortunately, the expression corresponding to (2.15) was misprinted in that 

reference. 

The dimensionless parameter A characterizes the matrix-fiber friction, or it can be 

interpreted as a spring constant (inverse to a standard definition), if the region 0<x<a is 

connected by a linear spring. The definition of this parameter is chosen in the form (2.7), so 

the limit case of no friction would correspond to A = 0, and a less constrained (softer) 

system will have higher values of A. 

ii) The bridging zone of arbitrary length. The formulation described above is extended to 

the case of an arbitrary number of microcracks (say AO formed in the bridging zone. The 



geometry of this general case is given in Figure 2. The symmetry condition (2.2) with results 

(2.3) and (2.4) still apples. As mentioned previously, the displacement on the ligaments 

corresponding to fibers are assumed constant (different on each interval, of course). Thus 

the boundary conditions along the bridging zone become 

Re<£'(x)=0  on x < 0 and a+pk < x < p(k+l) 
(2.17) 

Im0'(x)=O   on pk < x < a+pk and pN < x , k=0,1,2,..,N-1 

k=0,l,2,...,N-1 

In combination with asymptotic behavior (2.5) conditions (2.17) determine a general form 

of an analytic function up to N constants. As is known (Muskhelishvili, 1972), there are 

several possibilities to form this function, which differ in the choice of the location of the 

singular points. A physically suitable choice is the case with singularities at crack tips. 

Thus, the stress potential <t>' (z) can be written as follows: 

N-l 

4>'(z)   = —^- K  u     . (2.18) 
N-l 

2j2?t  Jz  fl   (z-a-pk) (z-p(k+l) ) 
k=0 

N constants d^ have to be determined from the conditions on the fibers. Condition (2.7) 

becomes 

XFk=   Bk, k=0,l,2,...,N-l, (2.19) 

where B^ is the cumulative displacement on the interval on the left of the microcrack k; so 

k = 0 corresponds to the location of the first fiber. Denoting ABJ the displacement gain due 

to nonuniform opening of the microcrack /, the total displacement on the interval k is 

N-l 
Bk = C ABi* (2.20) 

i=k 

The value of the displacement increment gained over the microcrack k is determined as 



integral 

AB K + l 
k        ß 

p(k+l) 

a+pk 

a+pk 

Im<£' (x)dx = 

p(k+l) 

N-l 

(Ä+DK   .n (x-di) V '      eo 1 = 0 

2ß, 

dx.    (2.21) 
N-l 

27tx(x-a-pk) (pk+p-x)   f]   (x-a-pj) (x-pj-p) 
j=0,j*k 

The force in (2.19) is obtained by integration of the real part of the stress function; thus, 

Fk= 2 

a+pk                   »a+pk 

Re<f>' (x)dx= 2      

pk J pk    , 

N-l 

K    .n (x-di) 
oo 1=0 

dx (2.22) 
N-l 

27TX ft   (x-a-pj) (x-pj-p) 
j=0 

A^ equations (2.19) with equations (2.20,-22) form a complete system for determination of 

the N constants d^. This system is highly nonlinear. We solve this system by using the 

following observation. 

Rewrite the products in the numerators of (2.21) and (2.22) into polynomials 

N-l L • n (x-d) = r c.x\ k=0 i=0 
CN=1 (2.23) 

Substituting (2.23) into (2.21) and (2.22), taking coefficients q out of the integrals, and 

substituting the results into equations (2.19) one obtains a linear system for the coefficients 

q. On the other hand, the roots of the algebraic equation 

N 

L cixi - ° 
i=0 

(2.24) 

are the constants d^ that we needed to find. Thus the problem is reduced to the numerical 



solution of the algebraic equation of power N. Usually the most difficult part of the solution 

is the location of the roots. In the case considered here, this is not a problem; the value of 

the constant d^ corresponds to the location of the maximal opening of the microcrack 

number k. Thus, the intervals of the location of the roots of the equation (2.24) are 

completely determined, and this equation can be solved numerically with any a priori 

specified accuracy. As a practical matter, the constants d^ are necessary only for verification 

of the resulting stress function (2.18); for any other purpose the substitution (2.23) may be 

used. Thus, the problem is reduced to a linear system. 

A detailed numerical scheme of this solution of the system (2.19) and the integration 

procedure are given in the appendix. 

The stress intensity factors at the crack tips are determined by taking the appropriate 

limits, so 

K = K 
o °° 

N-l 

n d
k k=0  K 

(2.25) 

N. 
N-l 

Jp1NN!     [1   (a-pk) 
k=0 

K  _,_   .=  K a+pi       °° 

K   .=  K pi «> 

N-l 
11   (a+pi-cL ) 

k=0 (2.26) 
N-l 

(a+pi) (p-a)     []     p(i-k) (a-p(k+l-i)) 
k=0,k* i 

i=0,l,2,...,N-1 

N-l 
n (Pi-dk) 

k=0 (2.27) 

N-l 
pi(p-a)     [I     P(i-k+l) (p(i-k)-a) 

k=0,k*i+l 

i=l,2, — ,N 

The integrals (2.25-27), as well as the integrals described in appendix, were evaluated by 

using Gaus - Chebyshev numerical procedure. 
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3.RESULTS 

The numerical data given in this section were obtained in accordance with the following 

interpretations of the physical effects taking place during the process of the crack growth. 

The main factors to consider are the crack growth resistance of the composite, that is 

material resistance build up due to extension of the bridging zone, and the limiting value of 

the length of the bridging zone. The resistance, or toughening, of the composite is 

determined by the change of the local stress intensity factor acting on the uncracked matrix 

at the leading crack tip (at x = Np), due to extension of the bridging zone. The maximal 

length of the bridging zone and, therefore, the maximal toughening, is determined by the 

strength of the fibers, and, as a result, is controlled by the net force acting on the first fiber 

(counting from the main crack tip, as in the Figure 2.) or by the local stress intensity factor 

K(0). The behavior of these parameters within the bridging zone determines the stability of 

the zone development. 

The initial development of the bridging zone has been analyzed on the basis of the one 

link model. Figure 3. depicts a dependence of the leading stress intensity factor (relative 

value with respect to remote value is given) acting on the uncracked matrix versus the 

coefficient A and the relative fiber thickness. In the same figure the topographical map of 

this stress intensity distribution is given. The data are given for the ratio alb ranging from 

0.05 to 0.95, and values of A ranging from 0.0 to 3.0. The choice of the range of values of A 

is arbitrary since no data were available to relate it to a practical material composition. The 

natural limitation on this value that we used, is a requirement that the net force on the fiber 

remain strictly positive. That is, the displacement produced by the fiber slip out should not 

reach the crack opening displacement which would take place without fiber restraint. The 

physical nature of the bridging effect is well illustrated here. Increasing values of A 

correspond to an easier fiber pullout, and accordingly, with higher fiber pullout, the load 

gets transmitted from the main crack onto the leading crack tip at x = b. The data given in 

Figure 3. correspond to a continuous growth of the microcrack ahead of the fiber, as well. 

One notes that a small microcrack in combination with high values of A leads to unexpected 

high values of the leading stress intensity factor. This effect is due to the enforcement of a 

constant crack opening displacement on the matrix-fiber intersection. The reality of this 
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condition depends on the flexibility of the fiber, but it is evident that for any fiber there is a 

critical length of a microcrack when this effect will take place. Below this critical length, the 

smaller microcrack will experience a higher value of the stress intensity, and that value will 

decrease with the microcrack extension until it drops below the critical value. This effect is 

taking place only after the parameter A reaches a certain value. As follows from the shape 

of the surface in Figure 3., smaller values of A will allow stable existence of a small 

microcrack. This peculiar dependence of K(b) on the microcrack size will take place as well 

in the case of a relaxed condition on the displacement on the matrix-fiber interface. For 

example, our preliminary analysis shows the presence of the same effect in the case when 

this displacement is specified as a linear function this displacement is specified as a linear 

function across the fiber. Physically, the restriction imposed here represents the fiber 

flexibility, which restrains the crack surface shape and, therefore, is equivalent to an 

additional moment applied in the vicinity of the crack tip. 

The net force acting on the fiber with the corresponding topographical map are given in 

Figure 4, and the stress intensity factor on the main crack is given in Figure 5. The value of 

the net force on the fiber is given as a value per unit thickness normalized by the value of 

the net force acting on the fiber prior to matrix cracking. The shape of the fiber 

cross-section is not considered; thus, assuming that the fiber is represented by the entire 

ligament, the dimensionless force in Figure 4. is given as 

F*_ 7t   [b  1  

The stress intensity factor in Figure 5. is normalized by the applied stress intensity factor. 

The data in Figure 5. show the existence of the optimal fiber spacing - parameter A 

combination for lower values of K(0). In Figure 6., data corresponding to the leading edge 

of the fiber (x = a, Figure 1.) are given. The stress intensity factor at this point decreases 

with increasing value A, that is, with decreasing stiffness of the composite. This stress 

intensity factor becomes negative, which indicates that the tensile stress singularity becomes 

eliminated and the stress state changes into compression. The curve of K(a) = 0 on the 

topographical map in Figure 6. appears to coincide with the optimal path for minimal values 

-12- 
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of K(0), Figure 5, and an optimal path on the topographical map in Figure 3. The existence 

of the stress singularities at point x = 0 and x = a may be argued as physically not very 

realistic. However, in terms of the presented formulation which has no room for the 

fiber-matrix delamination along the fiber direction, these stress intensity factors may be 

used as a quantitative characteristic of the potential delamination. 

The development of fracture parameters during an extension of the bridging zone is 

discussed below. The length of the bridging zone is represented in terms of the number of 

microcracks developed within the zone. The algorithm given in the previous section may be 

used for any length of the bridging zone. However, the maximum number of microcracks 

within the bridging zone considered here is limited by the applicability of the small scale 

model. The small scale model may be applied up to a point, when the influence of non 

singular terms in the surrounding stress field becomes significant, and the value of the 

leading stress intensity factor no longer may be determined on the basis of the applied 

stress intensity factor only. An additional limitation of the length of the bridging zone in the 

small scale formulation is related to a specific feature of this model, and associated with the 

following fact: When the leading stress intensity factor is significantly reduced with respect 

to a value acting at the tip of the main crack, the insignificant amount of fiber pullout in the 

area of a leading crack tip brings that ligament surface to a state close to traction free 

position. In other words, the local stress state becomes so released that the effect of fiber 

reinforcement becomes insignificant. The data given by Rubinstein, 1985, for the case of 

the array of microcracks ahead of the macrocrack, may be used to estimate a reasonable 

length of the bridging zone with regard to the applicability of the small scale model. The 

second factor in establishing effectiveness of the fiber reinforcement was evaluated 

computationally. We found that a bridging zone with eighteen microcracks may serve as a 

reasonable representation of the major effects taking place in association with the bridging 

mechanism. 

The physical limitation for the extension of the bridging zone is the strength of the 

fibers. The first fiber (counting from the main crack tip) bears the highest load and 

supposedly limits the total length of the bridging zone. In Figure 7. a history of the force 

increase during the bridging zone extension is given. We considered three cases here, 
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alp = 0.25, alp = 0.5 and alp = 0.75, which reflect major tendencies in the model. The length 

of the bridging zone is given in terms of a number of microcracks, N, involved in the zone. 

The parameter A was varying from 0 to 3.5 in 0.5 intervals. The net force acting on the fiber 

was computed in accordance with equation (2.22) and then normalized by the net force 

acting on the ligament corresponding to a first fiber prior matrix cracking. That is 

Tl(N>0)   =  ^ 
00 

^5  F1. (3.2) 

In the case N=0 the matrix is still intact, and the net force on the fiber is a portion of the 

force on the ligament proportional to the area occupied by the fiber. Assuming that the 

fiber has a circular cross section, and that the period of fiber distribution is the same in the 

crack front direction, the force on the first fiber is 

7ra 
V

N=O
> 

=i?2i HF
I- < -3> 

C CO*' 

The data in Figure 7. shows that after a relatively small number of microcracks developed 

in the bridging zone, the value of the force acting on the first fiber reaches the maximum, 

and consequently this value does not depend on an additional number of microcracks. 

Higher values of the parameter A increases the length of this transition. Thus, the 

assumption that the maximal value of the force on the first fiber bounds the length of the 

bridging zone, is not well justified. Consequently, the maximal amount of fiber pull out, as a 

limiting criterion for the bridging zone length, has to be ruled out in terms of this model 

inasmuch as that amount is proportional to the magnitude of the force and, therefore, has a 

similar behavior with respect to the length of the bridging zone. 

A similar trend is observed in the behavior of the stress intensity factor acting at the tip 

of the main crack, Figure 8. This stress intensity factor also characterizes the stress intensity 

within the fiber, and, additionally, it can be used as a parameter determining the possibility 

of delamination at the fiber matrix interface. As shown in Figure 8., the values of the stress 

intensity factors reach their maximum after relatively few microcracks develop in the 

bridging zone. As in the case of the force on the first fiber, the higher values of the 

parameter A increase the length of the transitional bridging zone, after which the stress 

intensity factor practically does not change. 
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The distribution of the forces acting on the fibers and the local stress intensity factors 

(only stress intensity factors at the leading tips are represented) are given in Figure 9. The 

values of force in Figure 9a. are normalized differently from the previous case. If in the 

previous case the fiber was assumed to be of constant thickness and the fiber spacing was 

changed, the force in Figure 9a. is given as a force per the period of fiber spacing. That is 

T    = -1 27ü   F, . (3.4) 
P xk* 

The subscript k in (3.4) indicates the position of the fiber. In this form the force on the fiber 

practically does not depend on the fiber spacing ratio, and insignificantly depends on the 

parameter A in the leading portion of the bridging zone. 

The distributions of the leading stress intensity factors for different spacing ratios are 

given in Figures 9b, 9c, and 9d. No significant dependence of the local stress intensity 

factors on the parameter A are observed here, except for the stress intensities in the vicinity 

of the main crack tip (first few microcracks) and the stress intensity factor at the leading 

crack tip (x = Np). Higher values of A produce higher stress intensity at the leading crack tip 

and lower stress intensity at the main crack tip. Basically, the fiber pull out mechanism is 

the mechanism of load redistribution from the main crack onto the array and in a greater 

part onto the leading microcrack. This phenomenon is reflected in the resistance curves 

given in Figure 10. The resistance curves represent material ability to sustain higher load 

due to internal toughening mechanisms. The composite fracture resistance is measured as a 

value inverse to the leading stress intensity factor (R = KJK(Np)) and is given versus the 

length of the bridging zone in terms of the number of microcracks. Three cases are given in 

Figure 10, for different spacing ratios, and, additionally, the dependence of the composite 

resistance on the fiber spacing ratio alp is given here for the incremental values of A. The 

fracture resistance increases with extension of the bridging zone, while the higher resistance 

is typical for lower values of the parameter A. The resistance curves obtained here differ 

from the curves given by Budiansky and Amazigo, 1989; the most significant difference of 

our results as compared with the data from this reference is in the spread of our curves with 

respect to the values of A. The relationship used by Budiansky and Amazigo for the force 

on the fiber and the local displacement are similar to one used here, but the measure of the 
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bridging zone length is different in our case. We were not able to convert the length scale 

used by Budiansky and Amazigo, 1989, to our case. 

The sensitivity of the resistance process to the fibers spacing ratio alp is quite 

significant. There are optimal values of the alp ratio for the corresponding values of the 

pullout parameter A, when the fiber reinforcement is most effective. The tendencies of the 

resistance curves show that higher resistance values may be obtained with an increase of the 

bridging zone. However, the applicability of the small scale model becomes questionable 

for a large bridging zone. The leading stress intensity factors computed using the small scale 

approach are too small, and, therefore, the contribution from the higher order terms in the 

Williams expansion may no longer be neglected. 

4. CONCLUSIONS 

A closed form exact solution was obtained for a single link model characterizing an 

initiation of the bridging zone development. 

An additional toughening, or anti-toughening (depending on alp ratio) aspect was 

observed, that is, constraint on the rotation of the matrix in the bridging zone due to the 

limited fiber flexibility. 

An implicit exact solution was formed for an extended bridging zone of arbitrary 

length. The solutions presented here take into account the discrete distribution of the 

fibers. 

The higher values of the parameter A, corresponding to a reduced fiber pullout 

resistance, reduce fracture resistance build-up by transforming the load onto the leading 

crack tip. On the other hand, in the case of high values of A, the tension on the trailing fiber, 

that is, on the fiber holding the main crack, is reduced. Thus, as a result, lower fiber pullout 

resistance will produce a long and stable bridging zone. In contrast, high fiber pullout 

resistance, that is, lower values of A, will concentrate the load on a small region in the 

vicinity of the main crack, maintaining high tension on the fiber at the main crack tip and, 

thus, creating a higher possibility of failure of this fiber, so the bridging zone will have a 

tendency to propagate as a whole. 

There is an optimal combination of fiber pullout resistance and fiber spacing when the 

highest fracture resistance may be achieved for the same length of the bridging zone. 
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Following the data given in Figure 10b, the optimal fibers spacing ratio varies from 

0.37(A=3.5)to0.8(A = 0.5). 
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APPENDIX 

Coefficients of the algebraic equation (2.24) are found by solving a system of linear 

equations (A5), which is obtained as follows. Introduce notations 

ki 

p(k+l) 

a+pk 

x 
dx     (Al) 

N-l 
x(x-a-pk) (pk+p-x)   [I   (x-a-pj) (x-pj-p) 

j=0,j*k 

and 

Hki= 

a+pk x  i 

dx. 

pk N-l 
x fl   (x-a-pj) (x-pj-p) 
j=0 

Form a matrix 

N-l 

A,  .=  AH,  .+  S^G   .    , ki ki    L. mi   ' 
m=k 

and an array 

k,i = 0,1,2,...,N-1 

(A2) 

(A3) 

N-l 

Di =-AH1    -  )    G  „   , k kN    L mN   ' 
m=k 

then equations (2.22) becomes 

N-l 

[>kici= Dk' 
i=0 

k =   0,1,2,...,N-1. 

(A4) 

(A5) 

The array (A4) emphasizes the fact that C^is known, and it is equal to one. 

The coefficients C/ of the algebraic equation (2.24) can be found by solving the system 

(A5), and then constants d{ are determined by employing a simple numerical procedure for 

solution of a nonlinear equation with roots located on a specified interval. 
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The integrals (Al) and (A2) are evaluated by using Gaus-Chebyshev quadrature. This 

numerical procedure is accurate up to the order of 4M, where M is a number of nodes on 

the integration interval. The distribution of the nodes coincides with roots of Chebyshev 

polynomials of first kind. Thus, using Hermite's formulae for Chebyshev polynomials, we 

have 

H ki 

M 

= - r 
s=i 

x 

N-l 
xs(xs-pk-p)(xs-a-p(k+i))   n_(xs"a-P:)(X

S-PJ-P) 
D=0 

j^k,j^k+1 
(A6) 

with 

and 

Xs=   Pk   +   fCcOS^TT    +    1), 

*ki 

M 

M L^ 
s=l 

x 

with 

N-l 
x    n   (x -a-pj)Xx -PJ-P) 

sj=0     s S 

j*k 

xs=  a +  pk + P^(cos^|^7r  +  1) 

(A7) 

(A8) 

(A9) 

Square roots in (A6) and (A8) have to be taken with consideration of the branch cut. The 

choice of the branch is based on the condition, that for x >pN the result should be positive. 
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A=0.50 

(a) Resistance curves versus number of microcracks, cases 
a/p = 0.25; a/p = 0.50; alp= 0.75. 

9.00 

1.00     1  i  i  i  i  I  i  i  i  i  i  i  i  i  i  i  i  i  i  i  I  i  i  i  i  i  i  i  I  i  I  I  i  I  I  '  I  I  '  '  M  '  ''''''  ' 
0.00 0.20 0.40 0.60 0.80 1.00 

i/P 

(b) Resistance curves versus fibers spacing ratio a/p; the length 
of the bridging zone constant, N = 18. 

Figure 10.—Fracture resistance curves; bridging zone is given in terms 
of number of microcracks in it. 
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